Charakteristiky četností

Charakteristiky četností

Četnost znamená počet výskytu daného jevu (např. samců), hodnoty (např. kategorie “velmi mnoho” nebo teploty 0°C) nebo intervalu hodnot (např. pH 3,5-4) v souboru dat. Četnosti mohou být vyjádřeny dvěma způsoby: (1) absolutně = počet hodnot v každé kategorii (výstupem takovéhoto zpracování je obvykle tabulka), (2) relativně = počet hodnot v každé kategorii je vydělen celkovým počtem měření, tedy celkový součet je 1 nebo 100, pokud každý podíl vynásobíte stem – jde o procenta (těchto výstupů se volí pro konstrukci poměrových grafů – koláčové, skládané sloupcové nebo pruhové).

Základním nástrojem pro četnostní zpracování nominálních, ordinálních a dopředu kategorizovaných intervalových či poměrových dat je kontingenční tabulka. Ty mohou být jednorozměrné = pro jednu proměnnou (tabule) nebo dvou a více rozměrných = pro dvě nebo více proměnných (tabule) – v základním kurzu se naučíme hodnotit jen dvourozměrné tabulky.

Princip tvorby dvourozměrné kontingenční tabulky.

Vícerozměrná kontingenční tabulka.

Nejčastěji používáme dvě proměnné a rozdíly v nich pak testujeme pomocí testu dobré shody. Video základní práce s nominálními a ordinálními daty.

Práce s nominálními a ordinálními daty v kontingenční tabulce.

Pokud chceme stejným způsobem zpracovat intervalová a poměrová data, je z nich třeba nejprve vytvořit kategorie – viz tabule.

Kategorizace poměrových proměnných.

Možností jak toho v MS Excel dosáhnout je více. Nejjednodušeji ale zároveň nejpracnější je ruční nahrazování (takto to dělat nebudeme). Nejrychlejší postup je přes funkci ČETNOSTI (stačí si do volného sloupce stanovit hranice intervalů a MS Excel Vám vyhodí počty měření v jednotlivých intervalech). Druhou, komplikovanější možností je použití funkce COUNTIF, což je asi nejgeniálnější funkce MS Excel, která toho umí strašně mnoho a budete-li v budoucny někdy řešit komplikovanější úlohy, pak se bez ní neobejdete, nicméně zde by to znamenalo počítat četnosti postupně pro jednotlivé kategorie (funkce ČETNOSTI je v tomto případě elegantnější). Postup je zdlouhavý a my jej dělat nebudeme, pokud se to chcete naučit tak tady je externí videonávod a to, co potřebujete vědět, je ve stopáži 27:50 až 39:20. Obě výše uvedené funkce Vám však vrátí jednorozměrnou kontingenční tabulku, což bude často problém pro Vaše další výpočty – Vy často budete chtít přiřadit kategorii ke konkrétnímu měření. Toho lze dosáhnout funkcí, se kterou jsme se seznámili v databázích, a to SVYHLEDAT, kde jako typ zadáte hodnotu 1 (jinak je postup stejný jako u spojování tabulek, POZOR!!! zadává se spodní hranice intervalu) – video.

Použití funkce SVYHLEDAT pro vytvoření kategorií.

Kontingenční tabulka má pro poměrová data ještě jednu výhodu. Jste pomocí ní schopni získávat velmi rychle charakteristiky polohy i variability pro Vámi zvolené kategorie – model využití je na videu.

Kategorizované charakteristiky polohy a variability v kontingenční tabulce.

Druhým nástrojem pro posouzení četností je histogram. Jedná se o graf četností. Obvykle na ose x jsou kategorie a na osu y jsou vynášeny hodnoty četností. Stejně jako u kontingenčních tabulek, tyto četnosti mohou být vyjádřeny absolutně nebo relativní stupnici. Lze do jednoho histogramu vynést více proměnných (měřených na stejné stupnici a kategorizovaných do stejných intervalů či kategorií). Samozřejmě, že když se jedná o ordinální nebo kategorizovaná poměrová data, tak na ose x jsou kategorie řazeny obvykle vzestupně. Vytvoření histogramu v MS Excel není v základu možné. Lze k jeho vytvoření použít výše zmíněné funkcí četnosti COUNTIF. Ale optimální je využití kategorizace provedené přes SVYHLEDAT. Užití si ukažme na pokračování příkladu ke kategorizaci poměrové proměnné – video.

Vytvoření histogramu v MS Excel.

Další možností je využití vytvoření histogramu přes kartu Vložit – histogram nebo nástroje Histogram na kartě Analýza dat, ale k ní se ale dostaneme až časem.

Dalším způsobem vyjádření četností histogramem je tzv. kumulativní histogram. V něm jsou postupně načítány hodnoty předchozích k následujícím kategoriím. Pokračujme v předchozím příkladu na videu. Kumulativní relativní četnosti budeme potřebovat při výpočtech nutných k posouzení normality dat.

Vytvoření histogramu kumulativních četností.

Histogramů se také často používá, když chceme rychle okometricky posoudit, jaké rozložení naše hodnoty mají. K tomu se dostaneme u náhodných veličin.